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Abstract In this paper, a novel technique is
developed for efficient finite element solution of
open region three-dimensional transmission line
structures in the quasi-TEM regime. Starting with
the general form of the solution to the three-
dimensional Laplace’s equation in spherical
coordinates, a set of asymptotic boundary condition
(ABC) operators is derived. The second-order ABC
is then applied on a conformable outer boundary for
the purpose of truncating the FEM mesh in an
efficient manner. To illustrate its application, the
method is used to compute the capacitance of a
rectangular microstrip patch and the results are
found to be in good agreement with data published
elsewhere.

I. Introduction

Typically, a printed circuit board contains not
only uniform transmission line etches that are
essentially invariant in the longitudinal direction, but
also chip sockets and connectors for interboard
coq-mmnication that can not be modeled as uniform
lines. Furthermore, the transmission lines
themselves may have various discontinuities such as
bends, changes in width, open circuits, gaps and
steps. In recent years, there has been an increasing
interest in modeling such discontinuities, and a
number of papers [1-7] have been written on this
subject. In most of these papers, the integral
equation technique has been used to study planar
conductors and structures containing a homogeneous
dielectric with planar interfaces. Castillo [8] has used
the finite element method (FEM), which can handle
any arbitrary configuration of conductors and
dielectrics. When using the FEM, one needs to deal
with the practical problem of mesh truncation and
the large number of mesh nodes. Similar to the two-
dimensional problems, the most widely-used
approach for dealing with the mesh truncation
problem for the three-dimensional geometry is to

place a fictitious, box-type conducting enclosure
sufficiently far from the structure [8]. This
approach, which assumes that the field decays
significantly before reaching the outer boundary,
typically results in an undesirable large mesh,
especially for three-dimensional geometries.
Previously, the authors have introduced an
asymptotic boundary condition (ABC), which
provided them with an efficient means for dealing
with open region two-dimensional microwave
transmission line problems in the quasi-static regime
[10]. The usefulness of the ABC to obtain an
accurate solution to a problem with a reasonable
number of node points was demonstrated in that
paper. For three-dimensional problems, where the
total number of mesh points is usually large, it is
expected that the availability of an accurate ABC will
play an even more crucial role in the solution of
practical problems.

In this paper, we derive an asymptotic boundary
condition for three-dimensional open region
problems in the quasi-static regime. This asymptotic
boundary condition enables us to bring the outer
boundary much closer to the structure than would be
possible with the p.e.c. artificial boundary. In order
to reduce the number of unknowns as much as
possible, we have chosen an outer boundary in the
shape of a box because it is the most conformable to
the structures considered.

II. Derivation of the Three-Dimensional
Asymptotic Boundary Conditions

The asymptotic or the absorbing boundary
condition has seen an increasing use in connection
with the partial differential equation (PDE)
techniques for solving open region electromagnetic
problems because it preserves the sparsity of the
discretized PDE matrix [9-10]. In this section, we
derive an asymptotic boundary condition for three-
dimensional quasi-static problems.

Consider the three-dimensional open region
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g,(x,y,z) = -q (17)

where p = (x2 ~ yz)llz and r = (x2 + yz + z2)112.
Similar expressions can be obtained for the faces
where y=constant and z=constant.

It is evident that one needs to use the appropriate
normal derivative expression on different faces of
the box-shaped outer boundary. Obviously, it is
much easier to choose a spherical outer boundary
where the normal derivative is simply ur. However,
for the purpose of truncating the unbounded region
surrounding the transmission lines in an efficient
manner, one needs to use a conformable outer
boundary which, as mentioned earlier, is typically a
box-shaped surface for three-dimensional
transmission line structures. The asymptotic
boundary condition expressions that we have just
derived will be implemented in the finite element
scheme in the next section.

III. Finite Element implementation of the
Asymptotic Boundary Condition

As indicated earlier, the region of interest, ~T, is

bounded by an artificial boundary, r2 , to limit the
number of unknowns. Over the bounded region, the
Laplace equation is solved at a finite number of grid
points. This equation is discretized through the use
of a weak form of variational representation.

Multiplying the Laplace equation (1) by a testing
function f and integrating over the volume ~T, we
get

J
fv’.(&Vu) dv = O (18)

nT

Using the Green’s second identity, we can rewrite
(18) as

J’cVu.Vf dv =
J

~ ds
r, ‘e an

(19)
Q~

Next, we discretize the region ~T into tetrahedral
elements. The triangular faces of the outermost
elements make up the outer boundary rz. In the
Finite Element formulation, the implementation of
(19) is carried out on an element-by-element basis.
For all but the outermost tetrahedral elements, the
right-hand side of equation (19) is zero. The
asymptotic boundary condition is needed to treat
those outermost elements.

For those elements having a face on the surface
prescribed by x=constant, where the outward normal
is in the plus or minus x-direction, the asymptotic
boundary condition given in (11) may be
incorporated into (19) to yield

J J&Vu.Vf dv = * f&{ Ctl(x,y,z)u
QT rz

+ p l(x,y,z)uz + yl(x,y,z)uzz (20)

+ Cl(x,y,z)uy + q l(x>y>z)uyy

+ &(X,y,Z)UyZ} dydz
Similar expressions can be obtained for the elements
having a face on the surface prescribed by y=constant
and z=constant.

IV. Numerical Results

A rectangular section of microstrip transmission
line of length L, width W, and height H above the
ground plane is shown in Figure 2. The outer
boundary rz was chosen to have the shape of a box.
Using the same mesh, we solved the potential
problem twice, first by applying the asymptotic
boundary condition on the outer boundary, and
second by placing a perfect electric conducting shield
at the same location. After solving for the
electrostatic potential, we computed the normalized
capacitance CH/&(area) for both cases. Tables 1 and
2 show the results of computation for the normalized
capacitance for different values of LiW and for three
dielectric constants (&r = 1.0, 6.0, 9.6). As Tables 1
and 2 indicate, the asymptotic boundary condition
yields more accurate results than those obtainable
with a perfectly conducting shield [2]. Clearly, for
this problem there is distinct advantage in using an
asymptotic boundary condition in place of a p.e.c.
shield.

~ ---------”--------------k-7l

~ \ Ground Plane

Figure 2. A rectangular microstrip patch enclosed

by a box in order to minimize the number
of mesh points.
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problem consisting of an arbitrarily- shaped
discontinuity embedded in a multilayered medium
above a ground plane shown in Figure 1. Let ~T be
the region exterior to the conductors and rz be the
outer boundary. Our objective is to derive an
operator which, when applied on the outer boundary,
makes the field emulate the asymptotic behavior at
infinity, and thus yields an accurate result for the
interior region with only a moderate number of
nodes. Equivalently, we accomplish this task by
imposing an asymptotic boundary condition (ABC)
on the field on the outer boundary.

(5)

As will-be shown later, the boundary contribution in
the finite element formulation enters into a surface
integral representation over the outer boundary, rz,
where the integrand is the product of a testing
function and the normal derivative of u. As a
consequence, the asymptotic boundary condition
needs to be imposed on the normal derivative of u.
For a spherical outer boundary, the normal
derivative is simply the radial one. Using B2 in
conjunction with Laplace’s equation in the spherical
coordinates, we obtain the following asymptotic
boundary condition operator
Ur = a(r)u + ~(r)uo + y(r)uee + g(r)u~$ (6)
where

et(r) = –~ (7)
r

,/”!

b
,/! /./~

. I ./” ~
~2... ./”’ !

J.-.-.---._._._._._._._.+/”!
!

(8)

(9)

\Gro.nd Plane

Figure 1. Geometry of a general transmission line

discontinuity in a multi-layered dielectric

region above a ground plane.

The boundary value problem to be solved can be
expressed by the set of equations:
V“(evu) = o in i+ (1)

(2)u = gi on the i* conductor

BmU = O on rz (3)
where u is the electrostatic potential, gi is the

potential on the conductors, and Bm is the mth order

asymptotic boundary operator.
For large r, tlhe general solution of the Laplace

equation in spherical coordinates can be written in
terms of spherical harmonics and inverse powers of r
as

(4)
1=0m=-1 r

where Ylm((3,$) are spherical harmonics,
Manipulating (4), it can be shown that an mth order

asymptotic boundary condition operator can be

~(r) = 1 (lo)
2r sin20

As indicated earlier, it is highly desirable to use a
conformable outer boundary e.g., a box-shaped
surface for three-dimensional transmission line
structures, in order to minimize the number of node
points as much as possible. We present below the
expressions for the appropriate normal derivative for
the different faces of the box representing such an
outer boundary.

For the x=constant face of the box, the normal
derivative is plus or minus UX. Using the Chain rule,
and the relations between the angular and the
tangential derivatives, we can express UXas

Ux = (xl(x,y,z)u + pl(x,y,z)uz + yl(x,y,z)uzz +

Cl(%y,z)uy + nl(x,y,z)uyy + glky>z)uy. (1 1)

where

q(x,y,z) = =-
r2

(12)

p,(x,y,z) =-Z3X3MXJ’2
2r2p2

y~(x,y,z) = ‘3 ;r;y2

(13)

(14)

T-1l(XJ,Z) = (16)

~l(x,y,z~ = 4X3YZ2+ 3XY3Z2-W@4 + 2r2p2) (15)
2r2p4

z2y2x + x3r2

2r2p2written as
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Table 1. Normalized capacitance
(e~ea)for%=o’

3=0.2, DX=DY=DZ=0.5.

s, P.E.C. Shield ABc Reference [6]

(Present Method)
1.0 1.34 3.73 3.5
6.0 1.04 2.25 2.2
9.6 1.02 2.12 2.1

Table 1. Normalized capacitance
(ERea)f0r$=10%=100Dx=Dy=Dz=200

&r P,E.C. Shield ABc Reference [6]

(Present Method)
1.0 2.19 4.90 5.0
6,0 1.36 3.11 3.4
9,6 1.31 2.84 2.9

v. Conclusions

Starting from the general solution of the Laplace

equation in spherical coordinates, we derived a set of

asymptotic boundary conditions for three-

dimensional quasi-static problems for a spherical

outer boundary. The second-order boundary

condition was then generalized to a box-shaped outer

boundary, for the purpose of truncating the mesh in
an efficient manner, and implemented in the finite
element method to solve the potential problem of a
rectangular microstrip patch. The numerical results

show that the asymptotic boundary conditions yield
more accurate results than those obtainable with a

perfectly conducting shield placed at the same

location.
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